🏆偏好优化训练 - DPO、ORPO 与 KTO
通过 Unsloth 了解使用 DPO、GRPO、ORPO 或 KTO 进行偏好对齐微调,按以下步骤操作:
DPO 代码
python
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 可选:设置 GPU 设备 ID
from unsloth import FastLanguageModel, PatchDPOTrainer
from unsloth import is_bfloat16_supported
PatchDPOTrainer()
import torch
from transformers import TrainingArguments
from trl import DPOTrainer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/zephyr-sft-bnb-4bit",
max_seq_length = max_seq_length,
dtype = None,
load_in_4bit = True,
)
# 对模型进行补丁并添加快速 LoRA 权重
model = FastLanguageModel.get_peft_model(
model,
r = 64,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 64,
lora_dropout = 0, # 支持任意值,但 = 0 已优化
bias = "none", # 支持任意值,但 = "none" 已优化
# [新] “unsloth” 使用 30% 更少的显存,支持 2 倍更大的批量!
use_gradient_checkpointing = "unsloth", # 对于非常长的上下文可设为 True 或 "unsloth"
random_state = 3407,
max_seq_length = max_seq_length,
)
dpo_trainer = DPOTrainer(
model = model,
ref_model = None,
args = TrainingArguments(
per_device_train_batch_size = 4,
gradient_accumulation_steps = 8,
warmup_ratio = 0.1,
num_train_epochs = 3,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
seed = 42,
output_dir = "outputs",
),
beta = 0.1,
train_dataset = YOUR_DATASET_HERE,
# eval_dataset = YOUR_DATASET_HERE,
tokenizer = tokenizer,
max_length = 1024,
max_prompt_length = 512,
)
dpo_trainer.train()最后更新于
这有帮助吗?

