🏆偏好优化训练 - DPO、ORPO 与 KTO

通过 Unsloth 了解使用 DPO、GRPO、ORPO 或 KTO 进行偏好对齐微调,按以下步骤操作:

DPO(直接偏好优化)、ORPO(赔率比偏好优化)、PPO、KTO 奖励建模都可与 Unsloth 一起使用。

我们有用于复现 GRPO、ORPO、DPO Zephyr、KTO 和 SimPO 的 Google Colab 笔记本:

我们也出现在 🤗Hugging Face 的官方文档中!我们在 SFT 文档arrow-up-rightDPO 文档arrow-up-right.

DPO 代码

python
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 可选:设置 GPU 设备 ID

from unsloth import FastLanguageModel, PatchDPOTrainer
from unsloth import is_bfloat16_supported
PatchDPOTrainer()
import torch
from transformers import TrainingArguments
from trl import DPOTrainer

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "unsloth/zephyr-sft-bnb-4bit",
    max_seq_length = max_seq_length,
    dtype = None,
    load_in_4bit = True,
)

# 对模型进行补丁并添加快速 LoRA 权重
model = FastLanguageModel.get_peft_model(
    model,
    r = 64,
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 64,
    lora_dropout = 0, # 支持任意值,但 = 0 已优化
    bias = "none",    # 支持任意值,但 = "none" 已优化
    # [新] “unsloth” 使用 30% 更少的显存,支持 2 倍更大的批量!
    use_gradient_checkpointing = "unsloth", # 对于非常长的上下文可设为 True 或 "unsloth"
    random_state = 3407,
    max_seq_length = max_seq_length,
)

dpo_trainer = DPOTrainer(
    model = model,
    ref_model = None,
    args = TrainingArguments(
        per_device_train_batch_size = 4,
        gradient_accumulation_steps = 8,
        warmup_ratio = 0.1,
        num_train_epochs = 3,
        fp16 = not is_bfloat16_supported(),
        bf16 = is_bfloat16_supported(),
        logging_steps = 1,
        optim = "adamw_8bit",
        seed = 42,
        output_dir = "outputs",
    ),
    beta = 0.1,
    train_dataset = YOUR_DATASET_HERE,
    # eval_dataset = YOUR_DATASET_HERE,
    tokenizer = tokenizer,
    max_length = 1024,
    max_prompt_length = 512,
)
dpo_trainer.train()

最后更新于

这有帮助吗?