This command only needs to be set once on a single machine. It does not need to be configured before each run. Then:
Download level-zero-win-sdk-1.20.2.zip from GitHub
Unzip the level-zero-win-sdk-1.20.2.zip
In Command Prompt, under conda environment unsloth-xpu:
Example 1: QLoRA Fine-tuning with SFT
This example demonstrates how to fine-tune a Qwen3-32B model using 4-bit QLoRA on an Intel GPU. QLoRA significantly reduces memory requirements, making it possible to fine-tune large models on consumer-grade hardware.
Example 2: Reinforcement Learning GRPO
GRPO is a reinforcement learning technique for aligning language models with human preferences. This example shows how to train a model to follow a specific XML output format using multiple reward functions.
What is GRPO?
GRPO improves upon traditional RLHF by:
Using group-based normalization for more stable training
Supporting multiple reward functions for multi-objective optimization
For Intel Ultra AIPC with recent GPU drivers on Windows, the shared GPU memory for the integrated GPU typically defaults to 57% of system memory. For larger models (e.g., Qwen3-32B), or when using longer max sequence length, larger batch size, LoRA adapters with larger LoRA rank, etc., during fine-tuning, you could increase available VRAM by raising the percentage of system memory allocated to the iGPU.
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" -
set ZE_PATH=path\to\the\unzipped\level-zero-win-sdk-1.20.2
from unsloth import FastLanguageModel, FastModel
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset
max_seq_length = 2048 # Supports RoPE Scaling internally, so choose any!
# Get LAION dataset
url = "https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl"
dataset = load_dataset("json", data_files = {"train" :
url}, split = "train")
# 4bit pre quantized models we support for fast downloading + no OOMs.
fourbit_models = [
"unsloth/Qwen3-32B-bnb-4bit",
"unsloth/Qwen3-14B-bnb-4bit",
"unsloth/Qwen3-8B-bnb-4bit",
"unsloth/Qwen3-4B-bnb-4bit",
"unsloth/Qwen3-1.7B-bnb-4bit",
"unsloth/Qwen3-0.6B-bnb-4bit",
# "unsloth/Qwen2.5-32B-bnb-4bit",
# "unsloth/Qwen2.5-14B-bnb-4bit",
# "unsloth/Qwen2.5-7B-bnb-4bit",
# "unsloth/Qwen2.5-3B-bnb-4bit",
# "unsloth/Qwen2.5-1.5B-bnb-4bit",
# "unsloth/Qwen2.5-0.5B-bnb-4bit",
# "unsloth/Llama-3.2-3B-bnb-4bit",
# "unsloth/Llama-3.2-1B-bnb-4bit",
# "unsloth/Llama-3.1-8B-bnb-4bit",
# "unsloth/Llama-3.1-70B-bnb-4bit",
# "unsloth/mistral-7b-bnb-4bit",
# "unsloth/Phi-4",
# "unsloth/Phi-3.5-mini-instruct",
# "unsloth/Phi-3-medium-4k-instruct",
# "unsloth/Phi-3-mini-4k-instruct",
# "unsloth/gemma-2-9b-bnb-4bit",
# "unsloth/gemma-2-27b-bnb-4bit",
] # More models at https://huggingface.co/unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/Qwen3-32B-bnb-4bit",
max_seq_length = max_seq_length,
load_in_4bit = True,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
model = FastLanguageModel.get_peft_model(
model,
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",
],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 1, # Recommended on Windows
packing = False, # Can make training 5x faster for short sequences.
args = SFTConfig(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 5,
max_steps = 60,
learning_rate = 2e-4,
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
dataset_num_proc=1, # Recommended on Windows
),
)
trainer.train()
from unsloth import FastLanguageModel
import re
from trl import GRPOConfig, GRPOTrainer
from datasets import load_dataset, Dataset
max_seq_length = 1024 # Can increase for longer reasoning traces
lora_rank = 32 # Larger rank = smarter, but slower
max_prompt_length = 256
# Load and prep dataset
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
XML_COT_FORMAT = """\
<reasoning>
{reasoning}
</reasoning>
<answer>
{answer}
</answer>
"""
def extract_xml_answer(text: str) -> str:
answer = text.split("<answer>")[-1]
answer = answer.split("</answer>")[0]
return answer.strip()
def extract_hash_answer(text: str) -> str | None:
if "####" not in text:
return None
return text.split("####")[1].strip()
# uncomment middle messages for 1-shot prompting
def get_gsm8k_questions(split: str = "train") -> Dataset:
data = load_dataset("openai/gsm8k", "main")[split] # type: ignore
data = data.map(
lambda x: { # type: ignore
"prompt": [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": x["question"]},
],
"answer": extract_hash_answer(x["answer"]),
}
) # type: ignore
return data # type: ignore
# Reward functions
def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]:
responses = [completion[0]["content"] for completion in completions]
q = prompts[0][-1]["content"]
extracted_responses = [extract_xml_answer(r) for r in responses]
print(
"-" * 20,
f"Question:\n{q}",
f"\nAnswer:\n{answer[0]}",
f"\nResponse:\n{responses[0]}",
f"\nExtracted:\n{extracted_responses[0]}",
)
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
def int_reward_func(completions, **kwargs) -> list[float]:
responses = [completion[0]["content"] for completion in completions]
extracted_responses = [extract_xml_answer(r) for r in responses]
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
def strict_format_reward_func(completions, **kwargs) -> list[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r) for r in responses]
return [0.5 if match else 0.0 for match in matches]
def soft_format_reward_func(completions, **kwargs) -> list[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r) for r in responses]
return [0.5 if match else 0.0 for match in matches]
def count_xml(text: str) -> float:
count = 0.0
if text.count("<reasoning>\n") == 1:
count += 0.125
if text.count("\n</reasoning>\n") == 1:
count += 0.125
if text.count("\n<answer>\n") == 1:
count += 0.125
count -= len(text.split("\n</answer>\n")[-1]) * 0.001
if text.count("\n</answer>") == 1:
count += 0.125
count -= (len(text.split("\n</answer>")[-1]) - 1) * 0.001
return count
def xmlcount_reward_func(completions, **kwargs) -> list[float]:
contents = [completion[0]["content"] for completion in completions]
return [count_xml(c) for c in contents]
if __name__ == "__main__":
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/Qwen3-0.6B",
max_seq_length=max_seq_length,
load_in_4bit=False, # False for LoRA 16bit
fast_inference=False, # Enable vLLM fast inference
max_lora_rank=lora_rank,
gpu_memory_utilization=0.7, # Reduce if out of memory
device_map="xpu:0",
)
model = FastLanguageModel.get_peft_model(
model,
r=lora_rank, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
], # Remove QKVO if out of memory
lora_alpha=lora_rank,
use_gradient_checkpointing="unsloth", # Enable long context finetuning
random_state=3407,
)
dataset = get_gsm8k_questions()
training_args = GRPOConfig(
learning_rate=5e-6,
adam_beta1=0.9,
adam_beta2=0.99,
weight_decay=0.1,
warmup_ratio=0.1,
lr_scheduler_type="cosine",
optim="adamw_torch",
logging_steps=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=1, # Increase to 4 for smoother training
num_generations=4, # Decrease if out of memory
max_prompt_length=max_prompt_length,
max_completion_length=max_seq_length - max_prompt_length,
# num_train_epochs=1, # Set to 1 for a full training run
max_steps=20,
save_steps=250,
max_grad_norm=0.1,
report_to="none", # Can use Weights & Biases
output_dir="outputs",
)
trainer = GRPOTrainer(
model=model,
processing_class=tokenizer,
reward_funcs=[
xmlcount_reward_func,
soft_format_reward_func,
strict_format_reward_func,
int_reward_func,
correctness_reward_func,
],
args=training_args,
train_dataset=dataset,
dataset_num_proc=1, # Recommended on Windows
)
trainer.train()